Whitney Towers and Gropes in 4–manifolds
نویسنده
چکیده
Many open problems and important theorems in low-dimensional topology have been formulated as statements about certain 2–complexes called gropes. This paper describes a precise correspondence between embedded gropes in 4–manifolds and the failure of the Whitney move in terms of iterated ‘towers’ of Whitney disks. The ‘flexibility’ of these Whitney towers is used to demonstrate some geometric consequences for knot and link concordance connected to n-solvability, k-cobordism and grope concordance. The key observation is that the essential structure of gropes and Whitney towers can be described by embedded unitrivalent trees which can be controlled during surgeries and Whitney moves. It is shown that a Whitney move in a Whitney tower induces an IHX (Jacobi) relation on the embedded trees.
منابع مشابه
3 Whitney Towers and Gropes in 4 – Manifolds
Many open problems and important theorems in low-dimensional topology have been formulated as statements about certain 2–complexes called gropes. This paper describes a precise correspondence between embedded gropes in 4–manifolds and the failure of the Whitney move in terms of iterated 'towers' of Whitney disks. The 'flexibility' of these Whitney towers is used to demonstrate some geometric co...
متن کاملSimple Whitney Towers, Half-gropes and the Arf Invariant of a Knot
A geometric characterization of the Arf invariant of a knot in the 3–sphere is given in terms of two kinds of 4–dimensional bordisms, half-gropes and Whitney towers. These types of bordisms have associated complexities class and order which filter the condition of bordism by an embedded annulus, i.e. knot concordance, and it is shown constructively that the Arf invariant is exactly the obstruct...
متن کاملWhitney towers and the Kontsevich integral
We continue to develop an obstruction theory for embedding 2–spheres into 4–manifolds in terms of Whitney towers. The proposed intersection invariants take values in certain graded abelian groups generated by labelled trivalent trees, and with relations well known from the 3–dimensional theory of finite type invariants. Surprisingly, the same exact relations arise in 4 dimensions, for example t...
متن کاملJa n 20 04 Whitney towers and the Kontsevich integral
We continue to develop an obstruction theory for embedding 2–spheres into 4–manifolds in terms of Whitney towers. The proposed invariants take values in certain graded abelian groups generated by labelled trivalent trees, well known from the 3–dimensional theory of finite type invariants. Surprisingly, the same exact relations arise in 4 dimensions, for example the Jacobi (or IHX) relation come...
متن کاملHigher-order intersections in low-dimensional topology.
We show how to measure the failure of the Whitney move in dimension 4 by constructing higher-order intersection invariants of Whitney towers built from iterated Whitney disks on immersed surfaces in 4-manifolds. For Whitney towers on immersed disks in the 4-ball, we identify some of these new invariants with previously known link invariants such as Milnor, Sato-Levine, and Arf invariants. We al...
متن کامل